
Synchronous-Reactive Web Programming

Rémy El Sibaïe
Sorbonne Universités,

Univ Paris 06, UPMC, CNRS,
LIP6 UMR 7606,

4 place Jussieu 75005 Paris.
remy.el-sibaie@lip6.fr

Emmanuel Chailloux
Sorbonne Universités,

Univ Paris 06, UPMC, CNRS,
LIP6 UMR 7606,

4 place Jussieu 75005 Paris.
emmanuel.chailloux@lip6.fr

Abstract
The current event-based model of web client programming
lacks of a high level abstraction for concurrency and com-
munication when many interactions are involved. The de-
sign of JavaScript runtime in the browser is very simple and
chains steps of input handling and computation of output in
a sequential way. This definition describes exactly a sub-
set of programs well handled by the synchronous-reactive
model. It proposes constructs to express parallel tasks com-
municating through broadcasted signals enforcing a static
hypothesis of determinism, coherency and causality that im-
prove programs composition. It is then interesting to con-
sider client events as inputs and web view elements as out-
puts of a synchronous-reactive program. We describe here
the design of pendulum, a language extension implement-
ing those principles and targeting web client programming,
which generates fast sequential code.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Interoperability; D.3.3 [Programming Languages]:
Language Constructs and Features; D.3.4 [Programming
Languages]: Processors

General Terms Design, Languages, Experimentation

Keywords Web client programming, Synchronous-reactive
programming, Functional programming, OCaml, Embedded
domain specific language, Static typing

1. Introduction
The web programming community is currently shifting the
state of client programming to more evolved languages. It
includes new features and libraries in JavaScript, and new in-
novative languages using JavaScript as a backend. The goal

is to improve both safety and expressiveness. The former is
usually achieved by static analysis like Typescript [1] and
Flow [13] and the latter by adding new constructs to bet-
ter compose and orchestrate the interactions as in React [14]
or Elm [9], both data-flow models. This is possible and sup-
ported by the fact that the JavaScript runtime model is simple
and sequential, even for interactions handling.

1.1 Weaknesses of Interaction Handling in Common
Event-Based Systems

A client program is continuously computing outputs (com-
munications, displays) from the inputs (hardware, communi-
cations). It has to handle a tons of interactions seen as events
and their reaction.

The JavaScript model is driven by callback functions
attached to these events. We usually want to express complex
things like waiting for F5 key, or CTRL-R button to be
pressed to refresh the window, except if a video is currently
playing. This implies a logical computation of the events like
pF5´Key_pCTRL´Key^R´Keyqq^not PlayingVideo,
which is hard to write in an event-based system as simple as
in JavaScript without using an explicit global environment
shared by callback functions, which is painful to maintain
and compose with new features.

Functional reactive programming (FRP) [11] and other
recent data-flow models like React fit well to solve this
kind of interaction as it uses a global environment implicitly
built and modified by the composition of continuous values
usually called signals or behaviors. Describing the expected
result builds both the data dependencies and the calculus
which leads to less error in general.

In some cases, FRP is not the best way to express an
interaction. For instance, modifications on a text field is easy
to map in FRP because it is a continuous information. On the
opposite, for some events, we want to express control more
than data computation and it is less natural to express it in
FRP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

REBLS’16, November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4644-3/16/11...$15.00

http://dx.doi.org/10.1145/3001929.3001931

9

1.2 Synchronous-Reactive Programming
The synchronous-reactive model [15] (SR) comes from three
main languages: Esterel, Signal and Lustre and their deriva-
tives. In this paper, we only focus on Esterel [4], which is
an imperative reactive-synchronous programming, when the
two others are dataflow oriented.

As in reactive programming, the execution of an SR-
program is divided among steps. There is a single engine
running the whole program called the clock, which decides
the frequency of the steps. The tasks in parallel are thus said
to be synchronized and communicate by broadcasting sig-
nals, that are either present or absent. The language compo-
nents are statements modifying a global environment by side
effects. Those statements can be instantaneous (execution in
one step) or not (execution in more than one step). The pro-
gram is compiled in such a way that the execution is fully
sequential. It takes the inputs before a step, computes them,
and generates the outputs at the end.

The SR model is also based on the synchronous hypoth-
esis. It states that, since every communications and compu-
tations are instantaneous, it is possible to detect the incoher-
ences or any causality error. This makes the program behav-
ior safe and free of data-race or interblocking. This checking
is achieved by causality analysis of the program. The safety
provided by the SR model is not free as there are static con-
straints on programs. First, it is not possible to execute a
potentially infinite recursion in the language itself and the
only way to repeat is to gather information from one step to
the next. Second, the causality analysis can fail and rejects
a program that seems correct to the programmer. Those two
constraints are balanced by the abstractions brought by the
language constructs. In the end, if a particular code cannot
be written in the SR-language, it is still possible to write it
in the host language (like C for Esterel) at the cost of losing
causality analysis of this part.

1.3 Contributions
The sequential computing of a set of outputs from a set
of inputs is exactly what a web application does. That is
why we, in this paper, state that synchronous-reactive model
is fully applicable to the web client. It brings additional
constructions for concurrency with the parallel operator and
the imperative approach helps to represent JavaScript events
as signals. The automatic static scheduling of parallel tasks
saves a lot of work for the programmer so s/he can focus on
something else and it makes the program easier to maintain
and compose afterwards.

To support those statements, we introduce the SR lan-
guage pendulum, which is an immersion of a subset of Es-
terel into a Web client context. We also extends this model to
smoothly connect the clock of the SR programs to the events
of the Web and their reaction. Then we show how to use the
clock to take advantage of the Web client runtime. The im-

plementation is a syntactic extension over OCaml and the
OCaml code can be then compiled to JavaScript.

We start by introducing the core constructs of the lan-
guage and the programming API between the host language
and pendulum in Section 2. The new contributions to mix
Web and SR programming with the results are detailed in
Section 3. Section 4 presents the compilation scheme use
to generate OCaml code from SR programs. After a longer
example in Section 5, we compare our approach to related
work in Section 6 and we conclude.

2. Overview of pendulum
We introduce the language pendulum as a subset of Esterel
semantically speaking. It brings the complete SR expressive-
ness: communications, repetition through instants, parallel
and escaping. A pendulum program is then a combination of
statements with input or output signals parameters. The syn-
tax is given in Figure 1. We separately refer to synchronous
keywords in darkblue (dark grey) and OCaml keywords in
darkviolet (light grey) on the first occurrences of each key-
words in the text.

2.1 Basic Features
Communications are done through emit. It broadcasts the
presence information of a signal with its new inner value
in its scope. A global signal, defined by input or output,
reaches the whole program but a local signal, defined by a
let-in, is visible only in a particular statement. The signal
stays present for the current step and switches to absent at the
end until the next emission. If the signal is carrying a value,
it is kept between steps. The statement present choose one
of its branches depending the result of the presence test.

progF header* stmt
header F
| input ident;
| output ident;
test F ident
stmt F
| emit ident ocaml-expr
| nothing
| pause
| present test stmt stmt
| loop stmt
| stmt || stmt
| stmt ; stmt
| let ident = ocaml-expr in stmt
| trap label stmt
| exit label
| ! ocaml-expr
| suspend test stmt

Figure 1: pendulum’s syntax

10

To execute several statements in sequence, we use the
operator ; as in imperative languages. When the left operand
terminates, the right operand is started in the same step.
The repetition is handled by the loop statement, executing
indefinitely its body but not more than once per step, as
explained in Section 1.2. To express where the step stops
and waits for the next, the programmer has to write pause
himself. It is the case because a loop statement could have
a pause at the beginning, end, middle or even spend several
steps in the body of the loop. If pause is missing, it can be
inserted by the compiler at the end of the body so that the
program does not actually loop instantaneously at runtime.
pause is also used outside of this context to wait for the next
step to continue. To finish , nothing does nothing, and the
! operator runs a host language expression instantaneously.

The reader may have noticed there is no mention of types
in the syntax. The task of type checking and type inference
is left to the host language as explained in section 2.3.

2.2 Parallel and escaping behaviors
The purpose of the || operator is to evaluate left operand
and right operand in parallel. Their execution are synchro-
nized on the same clock and their steps are executed at the
same time. The execution order is specified by the compiler
during the scheduling pass and is constrained by the commu-
nications between those, thus the execution of the parallel is
deterministic.

In pendulum, it is also possible to escape the control-flow
with a trap statement. When an exit statement with the
same label is executed in its body, it terminates immediately
and the control-flow continues the execution after the trap.
If escaping blocks are nested and several exit are executed,
it terminates the body of the outermost trap. If there are
parallel tasks in a trap and one calls exit, all of them are
terminated. The last statement, suspend, blocks its body
each step a signal is present.

2.3 Implementation
The implementation is built on top of OCaml[16], a general
purpose language, embedding the functional, the impera-
tive and the object programming paradigms. The embedded
code is compiled thanks to the PPX macro engine, part of the
tools distributed with OCaml. We choose this language for
its several powerful features: algebraic datatypes, pattern-
matching, exceptions, modules, objects. . . , but also for its
typechecking and type inference that bring both safety and
expressiveness. It is well-fitted for the Web too, as the com-
piler js_of_ocaml [23] generates vanilla JavaScript code
from OCaml bytecode. In this paper, JavaScript and OCaml are
considered to be interchangeable as one compiles to another
and the Document Object Model (DOM) library is fully
accessible in OCaml. They are just referred as the host lan-
guage. We give an overview in Figure 2 of the compilation
process to situate our work in the compilation chain.

OCaml bytecode compiler

OCaml+pendulum+js_of_ocaml

OCaml+js_of_ocaml

ppx_js

ppx_pendulum

OCaml

OCaml bytecode

js_of_ocaml compiler

JavaScript

this paper

Figure 2: Global compilation process

2.4 Interface with host language
A synchronous-reactive program runtime engine is strongly
different from a common imperative program. Indeed, the
execution of the successive steps has to be started from the
host language runtime. This is called the clock, which de-
cides at what rhythm the program is running. Before explor-
ing more possibilities, the model is kept simple and low-level
by exposing a programming interface to simulate the clock.

In the following example, p is defined as a synchronous
program by the special syntax in OCaml, let%sync, which
is an entry point for the macro engine. p awaits for s1 and
s2 to be present at the very same step. Then it emits a signal
o. The new value of o is computed in the OCaml world (see
Figure 1) by string concatenation (ˆ) of the values of s1 and
s2. The !! operator serves this purpose by extracting the
OCaml value of a pendulum signal in an OCaml expression.
The inferred type is thus string for all the three signals.

let%sync p =
input s1, s2;
output o;
loop (
present s1 (present s2

(emit o (!!s1 ^ !!s2)));
pause)

The program p is an object in the OCaml program with a
method create1 to instantiate a new version of it, p0, and a
new environment. This method takes as much arguments as
the number of input and outputs signals. Input signals takes
the initial values and the outputs signals a pair of initial value
and callback. Here, the function print_endline is called
whenever o is present.

let p0 = p#create ("", "") ("",
print_string)

The object p0 has a method react that starts one step of
execution. It also has a method for each input signal that sets

1 # stands for methods call for objects in OCaml

11

the signal value and switches its status to present for the next
step.

p0#s1 "hello ";
p0#s2 "world !";
p0#react
>> "hello world !"

Now both input signals are set as present with new values
and one executes a step of the program (the reaction), com-
puting the outputs. The callback assigned to o is also called
at this point. When react ends, the signals are switched
back to absent.

3. Mixing Synchronous with Asynchronous
Event-Base Programming

A synchronous-reactive program clearly states the depen-
dencies between the inputs and outputs of the system. It is a
closed box where the inner communications are checked.

At this point of the paper, pendulum is still not related
to web programming and can be used in a general purpose
OCaml program, but the programming layer introduced in
section 2.4 can still be error prone as the user has to deal
with triggering each step of the computation directly in the
program.

3.1 Input and React in Callbacks
Input is the action of setting a signal present for the next step
and react is the action of triggering the step. Thus the naive
way to connect an SR program to an event system is to use
a signal for each event and to input and react in the callback
of the event.

let sp = createSpan document;;
appendChild body sp;;
let%sync mouse_loc =
input location;
loop (
present location !(

sp##.textContent :=
Js.some (Js.string location)

); pause
);;

let m = mouse_loc#create ("");;
(* Input and react *)
window##.onmousemove := handler (fun ev ->

m#location (sprintf "%f, %f"
ev##.clientX ev##.clientY);

m#react
);;

Figure 3: Program displaying the mouse location

The code in Figure 3 presents this methods using the
js_of_ocaml library2. It prints the location of the mouse

2 ## (darkviolet/lightgrey) stands for JavaScript method call, and ##.
for JavaScript property access and modification. The object model of

in an HTML span tag. It executes the body of the loop at
each instant. If the signal location is present, it prints its
content on a span by side effect.

The goal in the following section is to add constructs that
help to generate the input-and-react part of the code behind
the scene, reducing boilerplate and smoothly connect the SR
world and the Web.

3.2 Events as Inputs, DOM Element Properties as
Outputs

The inputs of a web client program are clearly defined by the
DOM API as events. Those events are generally spawned
from a target that can be for instance, the window (the
browser), the document (the page), an XmlHttpRequest
or any DOM element. Those inputs can then be expressed as
a pair pevent, elementq. Our proposition is to introduce in the
SR language the DOM elements as parameters of the pro-
gram and the possibility to use their events as input signals,
and their properties as output signals. We extend the previ-
ously defined syntax of pendulum header, test and stmt in
the way shown Figure 4.

header F element ident gather? ;
test F ident | ident##event
stmt F . . . | emit ident##.property ocaml-expr

gather F { (event = ocaml-expr , ocaml-expr;)* }

Figure 4: Extended syntax

It is now possible to refer to an event that could spawn
on an element by mapping a signal on it. We can write it
in the following way, where window has been defined as an
element parameter of the program:

present window##onmousemove ...

This signal, window##onmousemove, is a now a read-
only global input of the program. This code generates a call-
back that inputs the value of the signal for the next step and
call the react method each time the event is spawned. At
this point, the clock of this program has the spawn frequency
of the event. If several events are referred, they all trigger a
step and the frequency of the clock become the frequency of
the reunion of those events.

By default, the signal window##onmousemove carries a
value of type event option3 to represent the state where
the event has still not spawn, where event is the common
JavaScript event object. This is a bit trickier to interact with
option types, so we add a construct to initialize and gather
(Figure 4, rule gather) event values when defined. This fea-
ture is also very useful for the programmer to give details on

JavaScript is not treated in the same way than the one of OCaml in this
library. Do not confuse with ## (darkblue/darkgrey) in pendulum.
3 Types must be read from right to left in OCaml. Here we have a signal
containing an option containing potentially an event

12

how the event must be input to the SR program, and even
more importantly, it is a first step to handle several events
between two steps and compose them.

Our inputs can be clearly specified, but it is also inter-
esting to investigate what can be done with outputs, as we
want a cleaner way to directly modify output data with-
out unchecked side effects (using !). With the possibility to
emit directly into JavaScript properties (Figure 4, rule stmt),
manipulating the DOM becomes part of the SR program and
can be checked in the same way signals are.

In Figure 5, we use all the previously defined extensions
to rewrite the program in Figure 3. The call to react is re-
moved and becomes implicit, so is the call to input the sig-
nal. The value of window##onmousemove signal is defined
by a string format of the float coordinates of the mouse.

let%sync mouse_loc2 =
element sp;
element window {

onmousemove = "", (fun ev ->
Js.some (Js.string (

sprintf "%f, %f"
ev##.clientX ev##.clientY))

);}
loop (
present window##onmousemove (
emit sp##.textContent
!!(window##onmousemove)

); pause)
let m2 = mouse_loc2#create (sp, window)

Figure 5: Program displaying mouse location with the ex-
tended syntax

In the next section we will explain how this model and
those extensions generate pretty fast programs without being
intrusive in the SR code.

3.3 Browser animation frame as a clock
The web browser is a very fast rendering machine whose
job is to refresh the display as soon as updates are made in
the DOM. Modifying the DOM in every callback can lead
to poor performance since it forces the browser to redraw
the display several times. An addition has been made to the
client API several years ago to work around this problem:
requestAnimationFrame [24]. This method takes a func-
tion as a parameter that will be called just before the next
redraw. By using a recursive call, it is also possible to loop at
the rhythm of the browser. Batching the updates to the DOM
and applying them just before the next redraw allows the
browser to optimize its execution and reduces the number of
redraw. This technique is used by Elm [8] and Mercury [22].

It is actually possible to make the SR runtime take
advantage of this execution scheme. Instead of both set-
ting the input signal and react in the callback, it is pos-
sible to input only and deal with the reaction in the next

requestAnimationFrame. Doing this is not intrusive in
the code, meaning there is no need to modify the entire pro-
gram to change the clock from an event-based clock or on a
requestAnimationFrame-based clock. Here, it is just a tog-
gle option to the SR program (~animate). If there is a lot
of events that input the same signal, the value is just gath-
ered without calling react. The reactions, and thus DOM
updates, are only called just before redrawing the DOM ele-
ments in only one big update. If the step takes too long and
misses the next redraw, the result will just be postponed to
the one after.

We measured the time performance of this execution
scheme. We used the well-known comparison benchmark
TodoMVC [21], which describes an implementation for a
todo-list application. Designed to compare client program-
ming frameworks in expressiveness, maintainability and
lines of code, there is also an already existing speed bench-
mark on TodoMVC applications from Mercury. This bench-
mark executes add 100 item, select each and remove each.
Those actions corresponds to one hundred events generated
in a row and the tested program has to react to them. We
compare the average execution time in milliseconds to dis-
play the result on 30 runs for pendulum and several other
web frameworks (Figure 6). These tests are executed on
Google Chrome 51 with an Intel Core i7-4690

0 300 600 900

Backbone 1.1.2

Ember 1.4.0

Angular 1.2.14

React 0.10.4

Om 0.5.0

Mercury 3.1.7

Elm 0.12.3

pendulum

react-ocaml

time(ms)

352

1002

713

424

240

114

153

82

372

Figure 6: TodoMVC speed benchmark over 30 runs (time in
ms)

We can see that Mercury, Elm and pendulum have rather
good results compared to other frameworks that do not batch
DOM updates. In pendulum, all updates are first gathered in
a list signal. After, during the animation frame following the
events, all updates are applied in one hit. Beware that this
benchmark does not demonstrate that those frameworks are
better in general, but mostly that they can handle efficiently
a lot of event occurrences spawned at the very same time. It
happens but it is not the common context for a web applica-
tion. However the notable conclusion for pendulum is that
the compilation from SR to sequential JavaScript code does
not add any overhead in execution time, in particular for the

13

react method, and it can have a reasonable speed without
changing the code.

4. Compiling Through Control Flow Graphs
There are several ways to compile and execute Esterel code
using state automata which explodes in generated code size,
using circuit semantic slower than using automata, and using
control flow graphs (CFG). We choose the last option, which
offers a good compromise between efficiency and code size.
This compilation technique is detailed in the Compiling Es-
terel book [19]. Another resource with many details on com-
piling pendulum is the previous paper of the authors [10] (it
is in French but compilation rules are not).

GRaphCode (GRC) compilation constructs a control flow
graph of the steps of the program. The choice of the executed
step depends on two environments, the selection tree and
the input signal set. The selection tree references all the
statements with their current state.

There is only two states for a statement: either not started
(finished) or in pause waiting to be resumed. Thus, the com-
pilation takes an SR statement p as input and builds two
CFGs, the surface being the CFG of the first execution and
the depth, being the CFG of the resumed execution of p.
CFGs of every sub-statements are then composed recur-
sively in a bigger one that is the step function. Control flow
graph primitives modify the selection tree and the signal en-
vironment during the execution by entering or exiting state-
ments, and also testing the current state of a statement to
know if it is the next to execute or not.

let%sync p =
loop (

!(print_string
"Hello!\n")

; pause)

(a) A loop with an
OCaml expression

loop(4) seq(3)

pause(2)

atom

(b) Selection tree of p

finished

sel 4 finish

exit 2

exit 3
enter 4

enter 3

enter 2

print_string "Hello !\n"

pause

(c) Control flow graph of p

Figure 7: Control flow graph transformation example

For instance, the program in Figure 7a has its selection
tree in Figure 7b (same structure as the syntax tree). There
is an infinite loop, so, at each step, the only final possible
node is pause. A header is added at the top of the graph to
keep the information of the end of the program.

This technique is the best choice in our case as there is
a whole-program, static causality analysis before this phase.

We can then benefit from this static phase to generate effi-
cient, sequential OCaml code from the control flow graph,
resulting in the method react previously introduced.

5. Example: Reactive Media Player
To better understand the SR model and the additions made in
pendulum, we will show in this section an example of a reac-
tive media player in a few lines of code, where the behaviors
of the controls are written in pendulum. The goal is to give
the intuition of how to solve a common interaction problem
with it. The full example can be found on pendulum’s page4.

We will start by a simple HTML code, containing an
audio tag (media), a button (playbtn) to switch between
play and pause, and an input tag (progress) typed as range
to use as a progress bar and seeker, as shown in Figure 8.

<audio id="media">
<source src="aerosmith.mp3" type="audio/mp3">

</audio>
<button id="playbtn">Play</button>
< input type="range" id="progress" value="0" />

Figure 8: Screen capture of the player

We start describing the SR program orchestrating our au-
dio player. It is called reactive_playerwith three element
parameters corresponding to each HTML tags described pre-
viously. There is also a local signal containing the current
boolean state of the video (true for playing). Each time the
user clicks on the button the value of the state is switched and
update_state is called. This function modifies the DOM
by calling the method play or pause on media and switch
the display on the button as expected.

let%sync reactive_player =

element playbtn;
element media;
element progress;

let state = media##.autoplay in
loop (
present playbtn##onclick

(emit state (not !!state));
present state !(

update_btn_content playbtn !!state
); pause

)
|| (* ... *)

4 https://github.com/remyzorg/pendulum

14

Now, we want to handle media progress updates in par-
allel of the previous part. The DOM API specifies that the
event timeupdate can be used to react to the timer of the
video. This is the one we are using as a signal.

Figure 9: Glitch: the cursor is jumping while seeking

However the progress bar must not be updated if the user
is seeking, or the result will be like in Figure 9. So, we
add a local signal seeking with this information and we
do nothing if it is present. If it is absent, we update the value
of the progress bar depending on the media current time.

let seeking = () in
loop (
present media##ontimeupdate (
present seeking nothing
!(update_slider progress media)

); pause
)
|| (* ... *)

Now, we must implement the other part and which consist
of updating the time of the media depending on the progress
bar chosen value after seeking, once again in parallel. We
start by waiting for the user to press the mouse on progress.
Then we define an escape block with label release. After,
at every step, the program emits seeking until the mouse
button is released (mouseup).

loop (
await progress##onmousedown;
trap release (
loop (
emit seeking;
present progress##onmouseup (
!(update_media media progress);
exit release

); pause
)

); pause)

At this point the program updates the current time of
the media and calls exit release to terminate the trap
release block, the body of the loop as well, and restarts by
waiting for mousedown. Then we just have to instantiate and
start this program from OCaml.

In this example we can clearly see the advantages of
the || operator to compose different parts communicating
without the need to think about the execution order. It allows
the programmer to build the code in an incremental way, and
when it is compiled we know that the causality is correct.
The proposed extensions also simplify the merge between
two worlds and help the programmer to stay at a higher level
of abstraction.

6. Related work
6.1 Synchronous-Reactive Languages
The domain of synchronous-reactive programming has seen
several new ideas since Esterel and some are close to
pendulum. Our ideas are inspired by ReactiveML [17] and
SugarCubes [6]. The former is a dedicated language for SR
programming. It is strongly typed and targets OCaml for
compilation. This model, as SugarCubes, differs from Es-
terel because it is not possible to react to the absence of a
signal. This constraint makes programs correct by construc-
tion with a different (and not weaker) expressiveness. Reac-
tiveML is also different at the runtime and compilation level.
The scheduling is dynamic and the code is generated from
an intermediate language of continuations. ReactiveML is
not especially dedicated to the Web, and was not designed
to handle our modifications to the runtime.

In the SR community, there is an other initiative to ex-
ecute Esterel-like program in a client-server web applica-
tion, on which this work partially relies. It is called HipHop
[5] and it is based on the multitier language Hop [20]. Hop
and HipHop have the legacy of Scheme programming lan-
guages and tend to stick to the Web in terms of dynamic typ-
ing, and reflexivity. HipHop doesn’t bind JavaScript events
to signals thus the clock must be handled manually when
pendulum has the element feature introduced in section
3. Another difference comes from the runtime model: re-
active programs are not compiled in HipHop but built as
JavaScript objects and interpreted. It even allows the pro-
grammer to dynamically add statements, which is powerful
but could possibly leads to runtime errors, what we want to
avoid in pendulum. The execution model also implements
the circuit semantics of Esterel, which generates shorter but
less efficient programs than GRC does.

6.2 Discussion about FRP and Dataflow
To pursue the introduction, web client programming is in
constant mutation. New languages and frameworks spawn
every month with incredible new ideas. Data-flow models
are currently a success, by taking their roots in long term
research in functional programming languages.

Elm [9], a good example, is a reactive language where the
web client document is described as a combination of contin-
uous values. The composition of those signals cannot create
a cyclic definition as everything is functional and immutable
with static typing. Elm has also a rich API that redefines all
interactions in terms of signals. It makes web programming
both elegant, safe and fast. There are other dataflow libraries
in JavaScript, like Flapjax [18], implementing the functional
reactive paradigm, and even React [14] is a form of func-
tional reactive programming. OCaml has also its FRP library
called React (another one) [7], which is heavily used by the
Eliom Framework [2] to build multitier applications.

As stated before, for some cases, FRP does not have a
natural expressiveness for programs where the problem re-

15

lies more on a state automata than on a continuous computa-
tion of a result. Imperative SR programming and FRP seem
to solve a common subset of problems, but in fact, they are
both efficient in different part of the program and could be
combined to extend the expressive power of a global over-
haul model, that can express both control and data. This is
what SCADE [12] does, the industrial heir of Lustre and Es-
terel, by using both state automata and continuous signals.

7. Conclusion
In this article we introduced pendulum, a language exten-
sion for synchronous-reactive programming. We showed
that this model properly addresses the problem of concur-
rency and interaction handling in web clients. Above that,
new constructs added to the original Esterel make possible
to unify the different worlds in a smooth way where com-
munications are directly mapped to JavaScript events. The
generated code is fast to handle and reacts to events, by us-
ing ideas, coming from web reactive programming to update
the DOM, that can be directly applied to SR model.

Future work might involve a rework of static scheduling
that is currently too simple and rejects valid programs during
static analysis. More work is also necessary to compose SR
programs in a host language in presence of static schedul-
ing. An other limit of the language is the element construct
that is currently constrained to static element but that could
be extended to a collection of the same kind of element, so
we would be able to represent a dynamic list of it. An exper-
iment is scheduled in the near future to use pendulum in
the context of a multitier framework like Eliom, in com-
bination with FRP. This leads to explore a way to exe-
cute SR programs both on the client and the server, where
communications are deeply asynchronous. To finish, an in-
vestigation on how pendulum could interact with common
JavaScript frameworks [3] seems necessary to communicate
with web programmers.

Acknowledgments
Many thanks to the reviewers for their attentive reading
and their numerous remarks. Thanks to Vincent Botbol and
Pierre Talbot from UPMC for the helpful proof reading and
their advices.

This work is part of the UCF5 project and partially funded
by Systematic Paris Region Systems & ICT Cluster.

References
[1] Typescript. https://www.typescriptlang.org/.

[2] V. Balat. Ocsigen: typing web interaction with objective
Caml. In Proceedings of the ACM Workshop on ML, 2006,
pages 84–94, 2006.

[3] Benjamin Canou and Emmanuel Chailloux and Vincent Bot-
bol. Static typing & JavaScript libraries: towards a more con-

5 http://www.ubiquitus-content-framework.fr/

siderate relationship. In 22nd International World Wide Web
Conference, 2013.

[4] G. Berry. The Foundations of Esterel. In Proof, Language, and
Interaction, Essays in Honour of Robin Milner, pages 425–
454, 2000.

[5] G. Berry and M. Serrano. Hop and HipHop : Multitier Web
Orchestration. CoRR, 2013.

[6] F. Boussinot and J.-F. Susini. The sugarCubes Tool Box: A
Reactive Java Framework. Softw. Pract. Exper., 28(14), Dec.
1998.

[7] D. Bunzli. React. http://erratique.ch/logiciel/
react.

[8] E. Czaplicki. Blazing fast HTML. http://elm-lang.org/
blog/blazing-fast-html, 2014.

[9] E. Czaplicki and S. Chong. Asynchronous Functional Reac-
tive Programming for GUIs. PLDI ’13, New York, NY, USA,
2013. ACM.

[10] R. El Sibaie and E. Chailloux. Pendulum : une extension
réactive pour la programmation Web en OCaml. In JFLA
2016 - Vingt-septièmes Journées Francophones des Langages
Applicatifs. (In French), Jan. 2016.

[11] C. Elliott and P. Hudak. Functional Reactive Animation. In
International Conference on Functional Programming, 1997.
URL http://conal.net/papers/icfp97/.

[12] Esterel Technologies. Scade Language Primer. Technical
report, 2014.

[13] Facebook. Flow. http://flowtype.org, .

[14] Facebook. React. http://facebook.github.io/react, .

[15] N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Springer-Verlag, Berlin, Heidelberg, 2010.

[16] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml System Release 4.03: Documentation
And User’s Manual. Technical report, Inria, 2015.

[17] L. Mandel and M. Pouzet. ReactiveML: a reactive extension
to ML. In Proceedings of the 7th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative
Programming, July 11-13 2005, 2005.

[18] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
A Programming Language for Ajax Applications. SIGPLAN
Not., 44(10):1–20, Oct. 2009.

[19] D. Potop-Butucaru. Compiling Esterel. Springer, Berlin,
2007.

[20] M. Serrano. HOP: an environment for developing web 2.0
applications. In International Lisp Conference, ILC 2007,
Cambridge, Apr 1-4, 2007, page 6, 2007.

[21] TasteJS. TodoMVC. http://todomvc.com/, 2014.

[22] J. Verbaten. Mercury, a truly modular frontend framework.
https://github.com/Raynos/mercury, 2014.

[23] J. Vouillon and V. Balat. From bytecode to JavaScript: the
Js_of_ocaml compiler. Softw., Pract. Exper., 2014.

[24] W3C. Timing control for script-based animations. http:
//www.w3.org/TR/animation-timing/, 2015.

16

